Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Dermatol ; 33(3): e15048, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38439204

RESUMO

As the largest organ, the skin provides the first line of defence against environmental pollutants. Different pollutants have varied damage to the skin due to their own physical-chemical properties. A previous epidemiological study by our team revealed that eczema was positively correlated with different air pollutants. However, the mechanism of action from different pollutants on the skin is less known. In this work, the differences among the genotoxicity, intracellular reactive oxygen species, and barrier-related parameters caused by two kinds of air pollutants, that is, S1650b and carbon black (CB) were investigated by Western blot, TUNEL, comet assay and RNA-sequences. The results indicated that both S1650b and CB caused DNA damage of keratinocytes. With the content of lipophilic polycyclic aromatic hydrocarbons (PAH), S1650b leaked into the keratinocytes easily, which activated the aromatic hydrocarbon receptor (AhR) in keratinocytes, leading to worse damage to barrier-related proteins than CB. And CB-induced higher intracellular ROS than S1650b due to the smaller size which make it enter the keratinocytes easier. RNA-sequencing results revealed that S1650b and CB both caused DNA damage of keratinocytes, and the intervention of S1650b significantly upregulated AhR, cytochrome oxidase A1 and B1 (CYP1A1 and CYP1B1) genes, while the results showed oppositely after CB intervention. The mechanism of keratinocyte damage caused by different air particle pollutants in this study will help to expand our understanding on the air pollutant-associated skin disease at cell levels.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Fuligem , Material Particulado/toxicidade , Queratinócitos , Dano ao DNA , Estresse Oxidativo , Poluentes Atmosféricos/toxicidade , RNA
2.
Food Res Int ; 157: 111289, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761597

RESUMO

Tryptophan, an essential amino acid, has been reported that it has the potential to regulate depression-like behavior. Meanwhile, Chronic stress-induced depression also has a close relationship with gut microbiota structure and composition. In the current research, we demonstrated that a tryptophan-rich diet (0.6% tryptophan w/w) significantly attenuated depression- and anxiety-like behaviors in a chronic unpredictable mild stress (CUMS)-treated mouse model. Tryptophan supplementation improved neuroinflammation, increased expression of BDNF, and improved mitochondrial energy metabolism in the brain of CUMS-treated mice. Besides, CUMS also enhanced the kynurenine pathway, but repressed the serotonin pathway and indole pathway of tryptophan metabolism, leading to a decrease in 5-HT and indole in serum, whereas tryptophan supplementation might shift the tryptophan metabolism more toward the serotonin pathway in CUMS-treated mice. The gut microbiome was restructured by increasing the relative abundance of Lachnospiracea, Clostridium, Lactobacillus, Bifidobacterium in tryptophan-treated depressive mice. Moreover, tryptophan administration inhibited stress-induced gut barrier damage and decreased inflammatory responses in the colon. Together, our study purports the gut-brain axis as a mechanism for the potential of tryptophan to improve depression and anxiety-related behavior.


Assuntos
Depressão , Triptofano , Animais , Ansiedade , Comportamento Animal , Eixo Encéfalo-Intestino , Depressão/metabolismo , Dieta , Camundongos , Serotonina , Estresse Psicológico/metabolismo , Estresse Psicológico/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...